Optimization of fecal sample processing benefits metagenomic studies of human gut microbiota

Medicine

HONG KONG

Joint Graduate Student Seminar Name: Samuel Tong Supervisor: Prof. Zigui Chen Date: 5/12/2017

Today's content

Background

Study Design & Methods

Results

Conclusion

BACKGROUND

Why study the gut microbiome?

- 'Dysbiosis of it is closely associated with some human diseases (e.g. diabetes & inflammatory bowel disease)
- Core microbial community in host could facilitate the immune networks to combat against many pathogenic species (e.g. *Citrobacter rodentium & Shigella flexneri*)
- Advancement of next-generation sequencing (NGS) technologies

Why doing metagenomics?

- Application of metagenomics in the human gut microbiome
 - Diversity
 - Functional implications (e.g. genes and pathways of interest)
- New insights for disease examination and subsequent treatment

ANALYSIS

nature biotechnology

Received 8 July 2016; accepted 11 August 2017; published online 2 October 2017; doi:10.1038/nbt.3960

Towards standards for human fecal sample processing in metagenomic studies

Paul I Costea¹, Georg Zeller¹, Shinichi Sunagawa^{1,2}, Eric Pelletier^{3–5}, Adriana Alberti³, Florence Levenez⁶, Melanie Tramontano¹, Marja Driessen¹, Rajna Hercog¹, Ferris-Elias Jung¹, Jens Roat Kultima¹, Matthew R Hayward¹, Luis Pedro Coelho¹, Emma Allen-Vercoe⁷, Laurie Bertrand³, Michael Blaut⁸, Jillian R M Brown⁹, Thomas Carton¹⁰, Stéphanie Cools-Portier¹¹, Michelle Daigneault⁶, Muriel Derrien¹¹, Anne Druesne¹¹, Willem M de Vos^{12,13}, B Brett Finlay¹⁴, Harry J Flint¹⁵, Francisco Guarner¹⁶, Masahira Hattori^{17,18}, Hans Heilig¹², Ruth Ann Luna¹⁹, Johan van Hylckama Vlieg¹¹, Jana Junick⁸, Ingeborg Klymiuk²⁰, Philippe Langella⁶, Emmanuelle Le Chatelier⁶, Volker Mai²¹, Chaysavanh Manichanh¹⁶, Jennifer C Martin¹⁵, Clémentine Mery¹⁰, Hidetoshi Morita²², Paul W O'Toole⁹, Céline Orvain³, Kiran Raosaheb Patil¹, John Penders²³, Søren Persson²⁴, Nicolas Pons⁶, Milena Popova¹⁰, Anne Salonen¹³, Delphine Saulnier⁸, Karen P Scott¹⁵, Bhagirath Singh²⁵, Kathleen Slezak⁸, Patrick Veiga¹¹, James Versalovic¹⁹, Liping Zhao²⁶, Erwin G Zoetendal¹², S Dusko Ehrlich^{6,27}, Joel Dore⁶ & Peer Bork^{1,28–30}

STUDY DESIGN AND METHODS

Human fecal samples processing

Three study phases:

- I. To assess the variability introduced by different DNA extraction methods
 - Comparison of DNA extraction derived technical variation to other possible biological and technical effects
- II. Comparative analysis of the 'best-performing' protocols
- III. To quantify the extraction accuracy by a mock community with known bacterial species
 - Estimation of the recovery of relative species abundances in samples

Outline of Phase 1

One single NGS facility for library preparation, NGS, and bioinformatics

Outline of Phase 3

The Chinese University of Hong Kong

RESULTS

Brief introduction of 21 methods

Invitek_PSPStool

Mobio_PowerSoil

Omega_Bio_Tek_EZNAstool

Promega_Maxwell

Qiagen_QilAampStoolMinikit

Bio101_G'Nome

MP-Biomedicals_FastDNAspinSoil

Roche_MagNAPureIII

No-Kit_GodonMethod

No-Kit_OtherMethod

Use_of_crude_feaces Treatment_before_lysis Use_for_extraction **Chemical lysing agent_buffer** Mechanical_lysis Shaking_aparatus Protectant_versus_lysis Protein precipitant DNA's precipitation DNA's_wash DNA's_dry Suspension_solution

Specific combinations of the use of protocol descriptors – 21 methods in total

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Method	Use_of_Kit																					
Method	Invitek_PSPStool																					
Method	Mobio_PowerSoil																					
Method	Omega_Bio_Tek_EZNAstool																					
Method	Promega_Maxwell																					
Method	Qiagen_QilAampStoolMinikit																					
Method	Bio101_G'Nome																					
Method	MP-Biomedicals_FastDNAspinSoil																					
Method	Roche_MagNAPureIII																					
Method	No-Kit_GodonMethod																					
Method	No-Kit_OtherMethod																					
Treatment_before_lysis	pretreatment_before_lysis																					
Chemical lysing agent_buffer	SDS																					
Lysis_Incubation	shaking																					
Lysis Incubation	mechanical lysis																					
Lysis_Incubation	glass_beads_0,1mm			8																		
Lysis_Incubation	glass_beads_0,5mm		1.5																			
Lysis_Incubation	glass_beads_>1mm																					
Lysis_Incubation	zirconia_beads_0,1mm																					
Lysis_Incubation	zirconia_beads_0,5mm																					
Lysis_Incubation	silica_beads_0,1mm						1															
Shaking_aparatus	MM200_MM400					1					<u> </u>											
Shaking_aparatus	Bead_Beater											1										
Shaking_aparatus	Vortex											12										
Shaking_aparatus	Bath_dry_waving											4										
Shaking_aparatus	break_during_shking						-											- 1				
Shaking_aparatus	Guanidine_thiocyanate																					
Shaking_aparatus	InhibitEX_Tablet																					
Protectant_versus_lysis	Tris_EDTA_NaCI_SDS										_						1					
香港中文大學 醫學院												-										

• Q = 6, 9, 15

Yes
No

DNA extraction and Fragmentation

Faculty of Medicine The Chinese University of Hong Kong Minimizing small fragmentation

 While using protocols 4, 10,12,19 lead to high yield of fragmented DNA, protocol 1 produces nearly no observable fragmentation

Maximizing DNA quantity

Protocol 18 reproduced 100 times more
DNA than protocols 3 and 12, respectively

Variability in microbial composition

- Library preparation and withinprotocol variation have the smallest effects
- Between-protocol variation may be greater than some biological effects

Species-specific abundance variation

Species

香港中文大學醫學 Faculty of N The Chinese University or Hong Kong

Effects of protocol manipulations on sample composition

- Among 22 protocol descriptors that vary between the Qiagen-based methods, 7 were significantly associated with diversity outcomes
 - **Qiagen-based** kits, # 5, 6, 8, 9, 11, 13, 15 and 20
- Mechanical lysis, zirconia beads and shaking were positively associated with diversity
- The only significant negative association was with the **InhibitEX tablet**

Associations are coded as negative (red) or positive (blue)

Potential methods...

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Method	Use_of_Kit																					
Method	Invitek PSPStool									-												
Method	Mobio_PowerSoil				V																	
Method	Omega_Bio_Tek_EZNAstool																					
Method	Promega_Maxwell																					
Method	Qiagen_QilAampStoolMinikit																					
Method	Bio101_G'Nome																					
Method	MP-Biomedicals_FastDNAspinSoil																					
Method	Roche_MagNAPureIII																					
Method	No-Kit_GodonMethod																					
Method	No-Kit_OtherMethod																					
Treatment_before_lysis	pretreatment_before_lysis																					
Chemical lysing agent_buffer	SDS			Δ																		
Lysis_Incubation	shaking	24																				
Lysis Incubation	mechanical lysis																					
Lysis_Incubation	glass_beads_0,1mm																					
Lysis_Incubation	glass_beads_0,5mm																					
Lysis_Incubation	glass_beads_>1mm															1						
Lysis_Incubation	zirconia_beads_0,1mm																					
Lysis_Incubation	zirconia_beads_0,5mm																					
Lysis_Incubation	silica_beads_0,1mm			V																		
Shaking_aparatus	MM200_MM400					/																
Shaking_aparatus	Bead_Beater											1.1										
Shaking_aparatus	Vortex		-																			
Shaking_aparatus	Bath_dry_waving			/							1											
Shaking_aparatus	break_during_shking																	4				
Shaking_aparatus	Guanidine_thiocyanate																					
Shaking_aparatus	InhibitEX_Tablet							-														
Protectant_versus_lysis	Tris_EDTA_NaCI_SDS																					

• Q = 6, 9, 15

Yes
No

Mock community extraction quality

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

Less is better

Conclusion

- A Bead-beating step significantly influences the composition
- Combined protocol Q (6,9,15) seemed to be the best overall and is predicted to suit most applications
 - With a median absolute quantification error of ≤ 0.5x
 - Potential benchmark for new DNA extraction methods
- Protocol #3 (Mobio PowerSoil) was expected to improve its performance by introducing a bead beating step.
- Remarks: Potential impact of kit contamination on samples with low biomass

THANK YOU!

Q&A

Bibliography

- Wang W-L, Xu S-Y, Ren Z-G, Tao L, Jiang J-W, Zheng S-S. Application of metagenomics in the human gut microbiome. *World J Gastroenterol.* (2015) 21:803–14
- Costea, P. I., *et al.* Towards standards for human fecal sample processing in metagenomic studies. *Nat Biotechnol.* (2017) **35**(11): 1069-1076